Energy-dependent fractional Sturm-Liouville impulsive problem
نویسندگان
چکیده
منابع مشابه
Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملExtremal Eigenvalues for a Sturm-Liouville Problem
We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...
متن کاملEigenparameter Dependent Inverse Sturm-Liouville Problems
Uniqueness of and numerical techniques for the inverse Sturm-Liouville problem with eigenparameter dependent boundary conditions will be discussed. We will use a Gel’fand-Levitan technique to show that the potential q in u00 þ qu 1⁄4 u, 0 < x < 1 uð0Þ 1⁄4 0, ða þ bÞuð1Þ 1⁄4 ðc þ d Þu0ð1Þ can be uniquely determined using spectral data. In the presence of finite spectral data, q can be reconstruc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2019
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci171017338m